Introduction

Nowadays the majority of electronic devices use the Bluetooth technology to
communicate with other equipment.

For example smartband, headphones, car audio, body scale, medical devices, etc ...

Bluetooth is very useful to make possible the interconnection of different devices, but
at the same time it also presents various data security risks. While supporting the
use of key authentication and encryption, many devices rely on a four-digit numeric

PIN and not much more secure passwords.

Therefore, the goal of the following work is to exploit the vulnerabilities of BLE
technology used by a body fat scale to communicate the detected parameters to a

mobile device.

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (Bluetooth LE, colloquially BLE, formerly marketed as
Bluetooth Smart) is a wireless personal area network technology designed and
marketed by the Bluetooth Special Interest Group (Bluetooth SIG) for new
applications in healthcare, fithess, and security , for the home entertainment industry
and for the automotive and automation industries.

The difference to the "classic" Bluetooth technology: Bluetooth Low Energy is
intended to provide significantly lower power consumption and cost while maintaining
a similar communication range.

Bluetooth devices have the ability to implement security measures for pairing (called
pairing) and subsequently for communication.

In the first case it is possible to implement a pin (usually 6 characters) to be typed on
the device to be connected, in the second case the transmitted data can be

symmetrically encrypted with the AES-128 algorithm.

Poweradd body fat scale data interpretation (BLE)

We bought a Poweradd Body Fat scale ', this device supports height body
parameters such as:

Weight

Body water

Body fat

Visceral fat

Bone weight

BMI

BMR

Muscle mass

This scale communicates the transmitted data with the HealthU +2? app, available on
the play store.

In our case (as is often the case) neither of the two security measures was put in
place. In case the pairing was protected by the pin it would still be possible to
decrypt the transmitted packets thanks to the crackle software.

In order to sniff the traffic it was necessary to have a bluetooth dongle available,
which implements the monitor mode that allows sniffing of the surrounding traffic.
The device we have equipped ourselves with is the ubertooth one®.

Uberthoot One

The Ubertooth One is an open source Bluetooth test tool from Michael Ossmann. It
is the world's first affordable Bluetooth monitoring and development platform and is a

fully open source product (both hardware and software).

Steps performed :
1. (terminal) mkfifo /tmp/pipe
2. (wireshark) add as a pipe interface /tmp/pipe and run
3. (teminal) ubertooth-btle -f -c /tmp/pipe

4. (wireshark) save file as .pcap or .pcapng

1

https://www.amazon.it/Poweradd-composizione-analizzatore-Technology-idratazione/dp/B079BCYQS

https://greatscottgadgets.com/ubertoothone/
https://play.google.com/store/apps/details?id=com.lefu.healthu&hl=en_US&gl=US
https://www.amazon.it/Poweradd-composizione-analizzatore-Technology-idratazione/dp/B079BCYQSM
https://www.amazon.it/Poweradd-composizione-analizzatore-Technology-idratazione/dp/B079BCYQSM

K XoK) M captured.pcap

CQUNCRCR RNE Qe=>2=7 3 E &

[ﬂ Apply a display filter ... <3/>

No. Time Source Destination Protocol ' Lengtt Info

41 2.267125 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
42 2.307126 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
43 2.327073 7a:00:fd:8c:6a:28 Broadcast LE LL 63 ADV_IND
44 2.354628 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
45 2.404630 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
46 2.498384 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
47 2.544635 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
48 2.588387 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
49 2.637139 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
50 2.684641 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
51 2.729643 cf:e3:17:19:02:26 Broadcast LE LL 69 ADV_IND
cH N TTI7I1AC ~rF e AD 1T 1O MDD E DiamAdan~4+ rLc 11 cn AN/ _TAID
S

» Flags

» 16-bit Service Class UUIDs (incomplete)
v Manufacturer Specific
Length: 20
Type: Manufacturer Specific (@xff)
Company ID: Ericsson Technology Licensing (@x0000)

» Data: cfe317190226cf000002080000000001c4

CRC: 0xelff3b

0010 B89 14 80 01 @a fe 09 00 d6 be 89 8Be 00 24 26 82 - - weeen $&-
0020 19 17 e3 cf 02 01 @5 05 02 fo ff 12 18 14 ff @@ - --«+ v vvvnnnn
0030 00 cf e3 17 19 02 26 cf 00 00 02 08 00 00 00 00 ------ {Hu covuouoo
0040 01 c4 87 ff dc¢ e

0 Z Data (btcommon.eir_ad.entry.data), 17 bytes

Figure 1. Some of the captured traffic.

We try to understand the hex string:

Type Comp. | MAC Scale | Weight [Impedance |Impedanc
ID Type set e
FF 0000 CFE31719022 |CF 0208 01 c4
6

To make the process of understanding the data easier it was necessary to retrieve
the manual of the chip (Holtek Body Fat Scale MCU HT45F75)*

The parameters set to zero and always zero in the various measurements is due to
the fact that the chip inside the scale is not fully used. Below some photos of the

chipset.

4 https://www.holtek.com/productdetail/-/vg/45E75

https://www.holtek.com/productdetail/-/vg/45F75

To understand the use of the data sent, it was necessary to reverse engineer the
app, retrieving the .apk file through ApkPure.
In this phase, various tools have been used to have the possibility to debug a phone

without root permissions.

Tools:
- Adb
- Jadx
- Dex2jar
- Android Studio

With adb it was possible to interface with the device and perform a backup of the
data saved by the app.

adb backup -f mybackup.ab -apk com.myapp

The .ab file or the backup was converted to a tar using openssi

dd if=mybackup.ab bs=24 skip=1|openssl zlib -d > mybackup.tar

Unpacked in the following way

tar tvf mybackup.tar

In the extracted folder /apps/com.lefu.healthu/ we find the db folder where all the db

created by the app are present.

Our Attention was focused on the nationalEnergy.db db which contains the tables
shown in the screenshot, the records recorded with the scale are present in the
BODY_FAT table.

(3 Nuovo Database ¢ Apri Database

v

] Salva le modifiche

L, Ripristina le modifiche

Naviga nei dati Modifica Pragmas ~ Esegui SQL
j Crea tabella 1 Crea Indice Modifica Tabella Elimina tabella »
Nome Tipo Schema
v || Tabelle (6)
» || BODY_FAT CREATE TABLE "BOD'
» || DEVICE_INFO CREATE TABLE "DEVI
» || USER_INFO CREATE TABLE "USEF
» || WIFI_LUNCLAIM_DATA CREATE TABLE "WIFI,
» || android_metadata CREATE TABLE andro
» || sqlite_sequence CREATE TABLE sqlite_
Indici (0)
& Viste (0)
L} Triggers (0)

Fields of BODY_FAT table:

(<]}

’_Q DB Browser for SQLite - /Users/arcangelo/apps/com.lefu.healthu/db/nationalEnergy.db

. |2} Apri Progetto |=] Salva Progetto

Modalita: ~ Testo

il

B =&

Modifica cella

. @ Collega Database

Espol

NULL

Figure 2. Available Tables

Nome

v || Tabelle (6)
v [E BODY_FAT

Tipo

Schema

CREATE TABLE "BODY_FAT"

o _id INTEGER
— viD TEXT
= INFO_ID TEXT
— FAT REAL
=] MUSCLE_KG REAL
=] VISCERALFAT REAL
=] METABOLIZE INTEGER
] WATERCONTENT REAL
] BONE_KG REAL
_| PROTEIN REAL
=] NOFAT_WEIGHT_KG REAL
] OBS_LEVEL INTEGER
=] SUB_FAT REAL
] BODY_AGE INTEGER
_| BODY_SCORE INTEGER
] BODY_TYPE INTEGER
=] STANDARD_WEIGHT_KG REAL
] WEIGHT_KG REAL
— SEX INTEGER
=] HEIGHT REAL
— AGE INTEGER
=] IMPEDANCE INTEGER
_| FLAG INTEGER
[TIMF STAMP INTFGFR

Figure 3.

"_id" INTEGER PRIMARY KEY AUTOIM
"UID" TEXT

"INFO_ID" TEXT

"FAT" REAL NOT NULL
"MUSCLE_KG" REAL NOT NULL
"VISCERALFAT" REAL NOT NULL
"METABOLIZE" INTEGER NOT NULL
"WATERCONTENT" REAL NOT NULL
"BONE_KG" REAL NOT NULL
"PROTEIN" REAL NOT NULL
"NOFAT_WEIGHT_KG" REAL NOT NUL
"OBS_LEVEL" INTEGER NOT NULL
"SUB_FAT" REAL NOT NULL
"BODY_AGE" INTEGER NOT NULL
"BODY_SCORE" INTEGER NOT NULL
"BODY_TYPE" INTEGER NOT NULL
"STANDARD_WEIGHT_KG" REAL NOT
"WEIGHT_KG" REAL NOT NULL
"SEX" INTEGER NOT NULL
"HEIGHT" REAL NOT NULL

"AGE" INTEGER NOT NULL
"IMPEDANCE" INTEGER NOT NULL
"FLAG" INTEGER NOT NULL

"TIMF STAMP" INTFGFR NOT NLII I

Much of this data was useful in understanding what values sent were and how they

were calculated.

Following the logs produced by the application when the data was received, this

string was logged: "locked-weight --------- 82.3 impedancelnt = 2.3"

This log does not refer to the hexadecimal string explained above and allowed us to
find the class that dealt with the interpretation of the data sent in the form of
hexadecimal converted into bytes and then interpreted.

Below is a screen of the class that deals with interpretation.

_apkpure.com [~/ApkProjects/HealthU_v1.5.5_apkpure.com] - ~/Downloads/HealthU_v1.5.5_apkpure.com.apk (1)/sources/defpackage/bnm.java

HealthU_v1.5.5_apkpure.com ¥ L Pixel2API28 v | P E=] o 5 | |
HealthU_v1.5.5_apkpure.com.apk €. bnljava € ayu.java €. bnn.java €. bnmjava €l sajava C. bbs.java 1. ayzjava wr Androidl

Q- locked 4 QK%Y [) Match Case [| Words [] Regex ? 3 matches
220 String substring2 = substring.substring(@, 2);
221 if (substring2.equals("CF")) {
222 String substring3 = substring.substring(6, 8);
223 String substring4 = substring.substring(8, 10);
224 double c = (double) c(st substring4 + substring3);
225 Double.isNaN(c);
226 double d = c / 100.0d;
227 int a2 = a(bng2.c);
228 String substring5 = substring.substring(10, 12);
229 String substring6 = substring.substring(12, 14);
230 String substring7 = substring.substring(14, 16);
231 int c2 = c(st substring7 + substring6 + substring5);
232 int i = bng2.b;
233 final int i2 = c2;
234 bnr bnr = new bnr(d, (double) bng2.a, a2, i, i2, sa.a, sa.a, st "“CF", bno.a());
235 final String = substring.substring(18, 20);
236 final double d2 = d;
237 final bni bni2 = bni;
238 final bnr bnr2 = bnr;
239 final String str3 = str2;
240 final bno bno2 = bno;
241 new Handler(Looper.getMainLooper()).post(new Runnable() {
242 ®f public void run() {
243 if (substring8.equals("01")) {
244 bbg.b(str: "progress weight ——————— "o+ d2);
245 bni2.a(bnr2);
246 return;
247 }
248 bbg.b(st "locked weight —-—-——- " + d2 + "impedanceInt -————— "+ 12);
249 bnp bnp = new bnp(str3, bno2.a());
1IN hni? alhnr? hnn 7 falea)s

Figura 4.

The attention was focused on to the function ¢ (string param) on line 224 which

retrieves the bytes (inverting them) and performs the following operation.

/* access modifiers changed from: private x/
public static int c(String str) {
if (TextUtils.isEmpty(str)) {
return 0;
}
return .valueOf(str, radix: 16).1intValue();

Figure 5.

As well as the interpretation of a number in hexadecimal and corresponds to our
weight. Then, starting from this and the data saved in the application database, all
the rest are calculated. The last quartet of bits is used for the impedance or the
parameter that allows you to divide the fat mass from the lean one.

Now we will be able to send any weight we want, without needing a scale.

The analysis of the body fat scale is documented below. This step allowed us to see
the chip used, and the fact that some values were always 0 due to the partial use of
this by the scale manufacturers.

It would also be possible to retrieve the firmware and understand it, since the

documentation is available on the manufacturer's website.

a2 O

ZA, ="
a8

&

ok §
s |

